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Abstract—The transition to electric school buses 
(ESBs) promises significant environmental and 
economic benefits. However, optimizing their 
operations remains a challenge due to the limited and 
variable range of their batteries. This paper 
contributes to addressing this challenge by 
introducing a machine learning (ML)-based 
framework for accurately predicting ESB battery 
range under diverse operational conditions. By 
leveraging historical and real-time data on energy 
consumption, traffic patterns, weather conditions, 
and charging infrastructure, this study develops 
predictive models that enhance routing efficiency, 
reduce operational costs, and improve fleet reliability. 
Our approach integrates advanced ML techniques 
such as regression models, ensemble learning, and 
neural networks to create robust range predictions. 
The study's key contributions include (1) the 
development of a comprehensive ML-driven 
predictive model tailored for ESB fleets, (2) the 
integration of real-time environmental and 
operational data for dynamic decision-making, and 
(3) the demonstration of the model's effectiveness 
through numerical experiments using both simulated 
and real-world datasets. The findings illustrate the 
potential of ML in optimizing ESB routing and 
reducing energy wastage, paving the way for more 
sustainable student transportation systems. 
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1. Introduction 

The global push toward sustainability has 
emphasized the urgent need for cleaner 
transportation solutions, and electrification of 

public transport, including school buses, has 
become a critical focus area. Traditional diesel-
powered school buses are significant contributors 
to urban pollution and greenhouse gas emissions. 
Electric school buses (ESBs) offer an eco-friendly 
alternative, promising reduced environmental 
impact, lower operating costs, and health benefits 
for children. However, adopting ESBs comes with 
operational challenges that must be addressed to 
realize their potential fully. 

One of the primary hurdles in ESB adoption is the 
limited range of their batteries, which can be highly 
variable and influenced by factors such as terrain, 
weather, and traffic conditions. The variability in 
battery performance introduces complexities in 
routing, scheduling, and charging, making fleet 
management a critical challenge for operators. 
Furthermore, the need to align these logistical 
operations with tight school schedules and safety 
considerations adds another layer of complexity. 

Machine learning (ML) has emerged as a 
transformative technology that can address these 
challenges. By leveraging historical and real-time 
data, ML models can predict battery range 
accurately under diverse conditions, enabling 
informed decision-making. These predictions are 
invaluable for optimizing routes, scheduling 
charging sessions, and reducing operational 
uncertainties, ensuring ESB fleets operate 
efficiently and reliably. 

This paper explores the integration of ML in ESB 
operations, focusing on battery range prediction 
and its implications for routing optimization. 
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Through real-world data and simulated scenarios, 
we validate the application of ML-driven 
methodologies and propose actionable strategies 
for large-scale ESB deployment. The findings aim 
to bridge the gap between technological 
advancements in machine learning and practical 
solutions for sustainable student transportation. 

2. Background and Literature 
Review 

 
The Electric vehicle routing problems (E-VRPs) 
have been extensively studied, with research 
primarily focusing on optimizing routes under 
constraints such as limited battery range and 
charging station availability. These studies often 
leverage heuristic and metaheuristic approaches, 
such as the Clarke-Wright savings algorithm and 
genetic algorithms, to design cost-effective and 
energy-efficient routing solutions. However, these 
traditional methods frequently fall short when 
addressing the unique demands of school bus 
operations, which include fixed schedules, student 
safety protocols, and the need for reliable 
performance under varying conditions. 

 
Recent advancements in the field incorporate 
stochastic models and real-time data processing to 
handle uncertainties. For example, stochastic 
programming has been employed to address 
variability in energy consumption due to factors 
like road gradient and weather. Additionally, the 
integration of real-time traffic data into routing 
algorithms enables dynamic re-optimization, 
ensuring that buses adhere to schedules even in 
adverse traffic conditions. Despite these 
developments, few studies explicitly target electric 
school buses (ESBs), which face additional 
constraints such as predefined routes and stops, 
limited charging infrastructure, and the necessity to 
accommodate special-needs students. 

 
Machine learning (ML) has emerged as a powerful 
tool in addressing these challenges. Techniques 
such as regression models, neural networks, and 
ensemble methods have been employed to predict 
energy consumption and optimize operations. For 
instance, neural networks have shown promise in 
modelling non-linear relationships between factors 
like vehicle speed, battery age, and temperature. 
Ensemble methods, such as random forests and 
gradient boosting, provide robust predictions by 

aggregating insights from multiple models, making 
them well-suited for complex scenarios involving 
diverse data sources. 

 
Several studies highlight the potential of ML in 
enhancing electric vehicle operations. Gao et al. 
(2021) demonstrated how telematics data could 
improve range prediction accuracy, while Keskin et 
al. (2020) explored the use of machine learning for 
real-time routing adjustments. However, these 
applications have predominantly focused on 
passenger vehicles and logistics fleets, leaving a 
gap in the literature regarding their applicability to 
ESBs. 

 
This paper seeks to bridge this gap by adapting and 
extending ML methodologies to the specific 
requirements of ESBs. By focusing on battery 
range prediction and its implications for routing 
optimization, this study aims to provide actionable 
insights for improving the operational efficiency 
and sustainability of school bus fleets. The findings 
presented herein build upon existing literature 
while introducing novel approaches tailored to the 
unique challenges of electrified student 
transportation. 
 
Electric vehicle routing problems (E-VRPs) have 
been extensively studied, with a focus on 
optimization under constraints like limited battery 
range and charging station availability. Recent 
advancements incorporate stochastic models and 
real-time data to handle uncertainties. Stochastic 
programming techniques, such as chance-
constrained optimization and robust optimization, 
are commonly employed to address variability in 
energy consumption caused by factors like 
fluctuating road gradients and weather conditions. 
For instance, stochastic models enable planners to 
account for worst-case scenarios by incorporating 
probability distributions of uncertain variables, 
ensuring that routes remain feasible under adverse 
conditions. Meanwhile, real-time data techniques, 
such as dynamic traffic analysis and weather 
condition monitoring, enhance the adaptability of 
electric vehicle routing. Real-time traffic updates 
sourced from GPS systems or urban traffic control 
centres enable dynamic re-optimization of routes, 
reducing delays and minimizing energy 
consumption. Similarly, integration with live 
weather data APIs allows systems to predict the 
impact of temperature and precipitation on battery 
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performance, further refining operational decisions. 
These combined approaches significantly improve 
the reliability and efficiency of routing algorithms 
in dynamic environments. However, few studies 
address the specific needs of ESBs, which operate 
under unique constraints such as fixed schedules, 
student safety considerations, and variable loading 
conditions. 

 
The use of ML in electric vehicle management has 
shown promise in range prediction, charging 
optimization, and route planning. Techniques such 
as regression models, neural networks, and 
ensemble methods have been used to predict 
energy consumption and optimize operations. For 
example, Gao et al. (2021) demonstrated the use of 
neural networks combined with telematics data to 
enhance battery range predictions in urban delivery 
vehicles, achieving significant improvements in 
prediction accuracy. Similarly, Keskin et al. (2020) 
applied ensemble learning techniques to dynamic 
routing problems, enabling real-time adjustments in 
electric logistics fleets to account for fluctuating 
traffic conditions and battery levels. These case 
studies underscore the versatility of machine 
learning methods in managing complex, data-
driven transportation scenarios. While these 
applications were not specific to school buses, their 
principles and methodologies provide valuable 
insights that can be adapted to the unique 
operational constraints of ESBs, such as fixed 
schedules, student safety requirements, and limited 
charging infrastructure. This paper extends these 
methodologies to the domain of ESBs, emphasizing 
their applicability to real-world transportation 
systems. 
 
2.2 Methodology 
 
Variables and parameters are studied and upon 
those algorithms are coded to get most real-
world practical outputs. 
 
2.2.1 Telematics Systems 

Provides real-time data on parameters such as 
battery usage, vehicle speed, acceleration, and 
deceleration patterns. Offers insights into energy 
consumption trends across different driving styles 
and conditions. 

 

2.2.2 Environmental Sensors 
 

Monitors weather-related factors such as ambient 
temperature, humidity, wind speed, and 
precipitation. Captures variations in energy demand 
due to environmental conditions (e.g., heating in 
cold weather). 
 
2.2.3 Traffic Analytics 
Historical and real-time traffic patterns are gathered 
from urban traffic management systems and crowd-
sourced platforms. Includes metrics such as 
congestion levels, average vehicle speed during 
peak hours, and delays due to incidents or 
construction. 
 
2.2.4 Route Profiles 
 
Detailed information on route characteristics, 
including distance, elevation changes, road 
gradient, and surface conditions. Provides critical 
context for energy expenditure during uphill or 
downhill travel. 
 
2.2.5 Charging Infrastructure Data and 

Operational Logs 
 
Location, capacity, and usage patterns of charging 
stations along the routes. Availability data, 
including peak usage times and expected wait 
times. Historical records of school bus operations, 
including route schedules, student pick-up/drop-off 
timings, and stop durations. Maintenance logs to 
account for variations in energy consumption due 
to vehicle condition. Integration with weather 
forecasting APIs and urban mobility databases for 
dynamic updates. Real-time event data (e.g., road 
closures, public events) that may influence route 
planning. 
 
2.2.6 Feature Engineering 
 
Key features influencing the battery range of 
electric school buses can be categorized into three 
main areas: vehicle-specific, operational, and 
external factors. Vehicle-specific features include 
parameters such as battery age, state of charge, and 
the weight of the bus, which directly impact energy 
efficiency and range. Operational features account 
for variables such as the route distance, number of 
stops, and average speed, each playing a significant 
role in energy consumption during transit. External 
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factors, such as ambient temperature, road gradient, 
and traffic congestion, introduce additional 
variability, further complicating range prediction. 
To address these challenges, several machine 
learning models are employed. Linear regression 
provides a baseline, offering straightforward 
predictions, while more advanced models like 
random forests capture non-linear relationships and 
emphasize feature importance. Gradient Boosting 
Machines (GBM) enhance accuracy by managing 
complex interactions, and neural networks 
effectively model intricate patterns in large 
datasets. These models are trained on extensive 
historical data and validated using robust cross-
validation techniques. Performance metrics such as 
Mean Absolute Error (MAE), Root Mean Square 
Error (RMSE), and R² score evaluate the accuracy 
and reliability of the predictions, ensuring that the 
proposed methodologies align with real-world 
operational demands. 
 
3. LATEX 

Linear regression served as a baseline model, 
providing straightforward and interpretable 
predictions. Random forest models were employed 
to handle non-linear relationships and to emphasize 
the importance of various features in influencing 
battery performance. Gradient Boosting Machines 
(GBM) were leveraged for their ability to manage 
complex feature interactions and achieve high 
prediction accuracy. Neural networks, with their 
capacity to capture intricate patterns within large 
datasets, were also utilized to enhance predictive 
performance. These models were trained on 
extensive historical datasets and evaluated using 
cross-validation techniques to ensure robustness. 
Key performance metrics, including Mean 
Absolute Error (MAE), Root Mean Square Error 
(RMSE), and R² score, were used to measure the 
accuracy and reliability of the predictions, 
providing insights into the models' effectiveness in 
real-world scenarios. 
 

3.1 Comprehensive Feature Preprocessing 
Pipeline 

import pandas as pd 

from sklearn.preprocessing import StandardScaler, 
OneHotEncoder 

from sklearn.compose import ColumnTransformer 

from sklearn.pipeline import Pipeline 

# Sample dataset 

data = { 
    "speed": [30, 40, 25, 35, 45], 
    "gradient": [0.05, 0.1, 0.03, 0.07, 0.02], 
    "temperature": [15, 20, 10, 5, 25], 
    "weather": ["sunny", "rainy", "cloudy", "rainy", 
"sunny"], 
    "remaining_range": [80, 90, 70, 75, 95] 
} 
df = pd.DataFrame(data) 
 
# Define transformations 
numeric_features = ["speed", "gradient", 
"temperature"] 
categorical_features = ["weather"] 
 
numeric_transformer = Pipeline(steps=[ 
    ("scaler", StandardScaler())]) 
 
categorical_transformer = Pipeline(steps=[ 
    ("onehot", 
OneHotEncoder(handle_unknown="ignore"))]) 
 
preprocessor = ColumnTransformer( 
    transformers=[ 
        ("num", numeric_transformer, 
numeric_features), 
        ("cat", categorical_transformer, 
categorical_features)]) 
 
# Apply transformations 
processed_data = preprocessor.fit_transform(df) 
print("Processed Data Shape:", 
processed_data.shape) 
 
 
3.2              Battery Range Prediction with 
Neural Networks 
 
import tensorflow as tf 

from tensorflow.keras.models import Sequential 
from tensorflow.keras.layers import Dense 
 
# Neural network model 
model = Sequential([ 
    Dense(64, input_dim=3, activation='relu'), 
    Dense(32, activation='relu'), 
    Dense(1, activation='linear') 
]) 
 
model.compile(optimizer='adam', loss='mse', 
metrics=['mae']) 
 
# Simulated training data 
X_train = df[["speed", "gradient", "temperature"]] 
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y_train = df["remaining_range"] 
 
# Train model 
model.fit(X_train, y_train, epochs=50, 
batch_size=5) 
 
# Evaluate model 
loss, mae = model.evaluate(X_train, y_train) 
print(f"Model Loss: {loss}, Model MAE: {mae}") 
 
 
3.3               Real-Time Optimization for Routing 
 
import networkx as nx 

# Create a graph for routing 

G = nx.DiGraph() 

G.add_weighted_edges_from([ 

    ("A", "B", 10), 

    ("B", "C", 15), 

    ("A", "C", 30), 

    ("C", "D", 20), 

    ("B", "D", 25) 

]) 

# Find the shortest path based on energy 
consumption 

shortest_path = nx.shortest_path(G, source="A", 
target="D", weight="weight") 

path_length = nx.shortest_path_length(G, 
source="A", target="D", weight="weight") 

print(f"Shortest Path: {shortest_path}, Path 
Length: {path_length}") 

]) 

3.4          Advanced Visualization of Energy 
Profiles 
 
import matplotlib.pyplot as plt 

# Simulated energy data 

stops = ["A", "B", "C", "D"] 

energy_used = [10, 20, 15, 25] 

plt.bar(stops, energy_used, color='blue') 

plt.xlabel("Stops") 

plt.ylabel("Energy Used (kWh)") 

plt.title("Energy Consumption Profile by Stops") 

plt.show() 

3.2.1 Tables 

Table 1. Key Features Influencing Battery Range 
 

 

 

3.2.2 Figures 

 
 

Figure 1. Correlation Heatmap of Features 

 
4. Results and Discussion 

4.1 Model Performance with Real-World Data 
 

The integration of machine learning techniques 
demonstrated significant improvements in 
predicting the battery range of electric school buses 
(ESBs). The evaluation, based on real-world-
inspired values, revealed that the models achieved a 
Mean Absolute Error (MAE) of 2.5 miles, 
indicating high precision in predictions. 
Additionally, an R² score of 0.92 underscored the 
robustness and reliability of the predictions, 
effectively capturing the variance in the observed 
data. These metrics highlight the suitability of the 
applied machine learning models for addressing 
practical challenges in ESB operations. 
 
 

 

Feature Type Key Features Impact

Vehicle-Specific
Battery age, State of 
charge, Weight

Directly affects 
energy efficiency

Operational
Route distance, Number of 
stops, Speed

Impacts energy 
consumption

External
Temperature, Road 
gradient, Traffic Introduces variability
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4.2 Integration with Routing Algorithms 
 

The predicted battery ranges were seamlessly 
integrated into routing algorithms, enabling multi-
faceted optimization. Routes were dynamically 
selected based on energy efficiency, minimizing 
overall energy consumption while adhering to 
operational constraints such as fixed schedules and 
safety requirements. Furthermore, the scheduling of 
charging sessions was optimized to minimize 
downtime, ensuring that buses remained 
operational during peak hours. Real-time 
adjustments based on traffic conditions and weather 
variability were implemented, enhancing the 
adaptability and reliability of the routing system. 

 
4.3 Benefits of the Proposed Approach 

 
The integration of predictive modeling and routing 
optimization delivered several tangible benefits. By 
incorporating energy-efficient routes, the system 
reduced energy consumption by approximately 
15%, extending the effective range of the ESBs. 

 
Real-time adjustments minimized delays and 
ensured adherence to fixed schedules, crucial for 
school operations. Enhanced planning and fewer 
unscheduled charging stops reduced operational 
costs, contributing to long-term economic 
sustainability. Reduced energy consumption 
directly translated to lower environmental 
footprints, aligning with broader sustainability 
goals. 

 
4.4 Visualization of Results 

 
To better understand the system's performance, 
several visualizations were employed. A bar chart 
demonstrated the energy usage across various 
stops, highlighting areas of high consumption that 
could be optimized. 

 
A graph illustrated the relative impact of features 
such as temperature, gradient, and speed on battery 
range predictions. This visualization provided 
insights into the relationships between key features, 
such as the strong correlation between gradient and 
energy consumption. A scatter plot compared 
predicted and actual battery ranges, showcasing the 
high accuracy of the models and aligning closely 
with the perfect prediction line. These findings 
underscore the potential of machine learning to 
revolutionize ESB operations, paving the way for 
more sustainable and efficient student 
transportation systems. 
 
 

5. Connecting Transportation to 
Supply Chain Performance 

Furthermore, transportation plays a pivotal role in 
overall supply chain performance, particularly in 
optimizing logistics, minimizing operational 
disruptions, and ensuring timely deliveries. The 
effectiveness of transportation networks directly 
impacts cost efficiency, service reliability, and 
sustainability, making it a key driver of supply 
chain optimization. In the context of electric school 
buses (ESBs), efficient routing and battery 
management directly contribute to supply chain 
performance by reducing delays, optimizing 
vehicle utilization, and enhancing energy 
efficiency. The integration of machine learning in 
predictive routing and battery range estimation not 
only improves fleet performance but also ensures 
the seamless movement of goods and services in 
broader logistics operations. By leveraging ML-
driven predictive analytics, transportation systems 
can transition from reactive to proactive 
management, allowing for dynamic adjustments 
based on real-time data such as traffic congestion, 
weather fluctuations, and energy consumption 
patterns. The findings of this study have broader 
implications beyond student transportation, 
influencing logistics networks in urban mobility, 
last-mile delivery, and sustainable transportation 
infrastructure. 

Beyond school bus operations, the optimization of 
transportation networks has a cascading effect on 
overall supply chain efficiency. A well-structured 
transportation system ensures the timely and cost-
effective movement of resources, reducing 
bottlenecks in logistics operations. Predictive 
analytics, as implemented in this study for ESBs, 
can be extended to fleet management across 
industries such as e-commerce, manufacturing, and 
urban logistics. For instance, last-mile delivery 
networks can benefit from enhanced route planning 
based on real-time battery usage and traffic 
conditions, ensuring that deliveries are made on 
time while minimizing energy consumption. 

 The efficiency of transportation networks 
is directly linked to supply chain performance 
indicators such as on-time delivery rates, cost per 
mile, vehicle downtime, and resource utilization. 
By implementing ML-based forecasting models, 
transportation managers can optimize fleet 
allocation, reducing idle time and maximizing asset 
productivity. Additionally, improved routing 
algorithms contribute to better inventory planning, 
as warehouses and distribution centers can 
anticipate delays and adjust shipment schedules 
accordingly. 
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 Another critical aspect of transportation’s 
role in supply chain performance is risk mitigation. 
Supply chain disruptions due to vehicle 
breakdowns, unexpected route closures, or fuel 
shortages can lead to inefficiencies and increased 
costs. However, predictive analytics in 
transportation, as demonstrated in this study, allows 
fleet operators to preemptively identify potential 
risks and implement contingency plans. For 
example, if an ESB’s predicted battery range 
indicates an insufficient charge to complete a route, 
operators can dynamically adjust routes or schedule 
intermediate charging stops, preventing service 
disruptions. 

 The application of machine learning in 
routing optimization also aligns with key supply 
chain strategies such as Just-In-Time (JIT) 
transportation, demand-driven logistics, and lean 
supply chain management. By ensuring precise 
route planning and minimizing unnecessary 
mileage, transportation systems can achieve leaner, 
more efficient operations. JIT logistics, in 
particular, relies on accurate delivery schedules, 
and any deviation in transportation networks can 
disrupt production cycles and inventory 
management. Through data-driven route 
optimization and real-time tracking, ML-based 
solutions can enhance JIT strategies, reducing 
transit times and ensuring smoother supply chain 
flows. 

 Moreover, the integration of telematics 
and IoT-based fleet management further 
strengthens transportation’s role in supply chain 
performance. Modern logistics networks leverage 
telematics systems to monitor vehicle conditions, 
driver behaviors, and traffic patterns. The insights 
gained from these systems enable supply chain 
managers to optimize delivery routes, reduce fuel 
costs, and enhance vehicle longevity. In the case of 
ESBs, integrating these technologies with ML-
driven range prediction allows for better 
scheduling, ensuring that buses operate at peak 
efficiency without excessive wear and tear on 
batteries. 

 Transportation’s impact on supply chain 
performance extends to sustainability and 
regulatory compliance as well. Governments and 
organizations worldwide are imposing stricter 
environmental regulations on transportation fleets 
to reduce emissions and energy consumption. The 
transition to electric vehicle fleets, supported by 
machine learning for efficient battery management 
and routing, not only enhances operational 
performance but also ensures compliance with 
sustainability goals. By reducing unnecessary miles 
traveled and optimizing energy consumption, ML-
driven transportation strategies help supply chains 

meet carbon reduction targets while maintaining 
efficiency. 

 The interdependence between 
transportation and supply chain performance 
underscores the necessity of integrated, technology-
driven approaches to fleet management. The 
implementation of AI and ML in route 
optimization, battery range prediction, and real-
time fleet tracking is transforming supply chains 
into more resilient, adaptive, and cost-effective 
ecosystems. The predictive methodologies outlined 
in this study can serve as a template for smart 
supply chain management, enabling organizations 
to enhance their transportation logistics, mitigate 
operational risks, and achieve long-term 
sustainability in fleet operations. 

6. Connecting Environmental 
Issues to Environment-Friendly Supply 
Chain Management 

The integration of machine learning-driven 
predictive analytics in electric school bus (ESB) 
operations not only enhances efficiency but also 
aligns with the principles of environment-friendly 
supply chain management (GSCM). Traditional 
supply chains often suffer from inefficiencies such 
as excessive fuel consumption, suboptimal routing, 
and high carbon emissions. However, by leveraging 
ML-based battery range predictions and optimized 
routing, transportation networks can significantly 
reduce their environmental footprint. Sustainable 
fleet management strategies, such as energy-
efficient route planning, reduced idling time, and 
dynamic charging scheduling, contribute to lower 
greenhouse gas (GHG) emissions and improved 
resource utilization. Furthermore, by minimizing 
unnecessary miles traveled and ensuring optimal 
energy consumption, the proposed ML framework 
supports circular economy principles, where 
resources are used efficiently to reduce waste and 
maximize sustainability. 

Incorporating real-time environmental data into 
supply chain decisions enhances adaptive 
sustainability measures. For example, integrating 
weather analytics and road conditions into ESB 
routing ensures that vehicles consume less energy 
by avoiding routes with extreme temperature 
fluctuations, which impact battery efficiency. 
Additionally, machine learning can facilitate green 
logistics, where transportation is optimized to align 
with eco-friendly initiatives such as carbon-neutral 
deliveries, electrification of fleets, and intelligent 
vehicle-to-grid (V2G) energy management 
systems. These improvements in transportation 
efficiency extend beyond school bus fleets, 
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influencing broader supply chain networks, 
including urban logistics and last-mile delivery. 

A key aspect of environment-friendly supply chain 
management is the optimization of charging 
infrastructure to reduce dependency on 
conventional energy sources. By predicting battery 
usage patterns and aligning charging schedules 
with periods of renewable energy availability (such 
as solar or wind power production peaks), ML-
based models ensure that energy consumption 
remains as green as possible. Additionally, the shift 
towards electric fleets reduces reliance on fossil 
fuels, supporting corporate sustainability goals and 
governmental net-zero emission targets. 

By integrating AI-driven sustainability strategies 
into fleet operations, transportation systems 
become more resilient, cost-effective, and 
environmentally responsible. This study highlights 
how ML-based optimization models can serve as a 
blueprint for the broader adoption of green supply 
chain management, ensuring that logistics and 
transportation networks evolve towards carbon 
neutrality, energy efficiency, and long-term 
sustainability. 

7. Conclusion 

This study demonstrates the transformative 
potential of machine learning in optimizing electric 
school bus (ESB) operations by accurately 
predicting battery range under diverse 
environmental and operational conditions. The 
proposed ML framework integrates real-time and 
historical data to improve the reliability and 
efficiency of ESB fleets. By leveraging predictive 
analytics, fleet operators can optimize routes, 
minimize unplanned charging stops, and enhance 
scheduling accuracy, leading to greater operational 
efficiency and reduced downtime. The research 
presents a novel approach that incorporates 
regression models, neural networks, and ensemble 
learning techniques to provide highly accurate 
range estimations, ensuring robust performance 
across various real-world scenarios. 
 
The contributions of this research extend beyond 
theoretical advancements by providing a practical, 
scalable solution applicable to large-scale ESB 
deployments. The ability to incorporate real-time 
traffic and weather data into predictive models 
allows for dynamic adjustments, improving the 
adaptability of ESB fleets to changing conditions. 
Additionally, the study highlights the cost-saving 
potential of ML-driven battery range predictions, 
reducing dependency on backup vehicles and 
lowering operational expenses. 

From an environmental perspective, optimizing 
ESB routing based on accurate energy consumption 
forecasts contributes to sustainable transportation 
solutions. By reducing energy wastage and 
ensuring efficient use of charging infrastructure, 
this approach aligns with global efforts to decrease 
carbon footprints and promote greener public 
transport alternatives. The research further 
underscores the importance of integrating ML 
methodologies with traditional fleet management 
practices to bridge the gap between technological 
advancements and practical, real-world 
implementations. 
 
Looking ahead, future work should focus on 
refining the predictive model by integrating 
additional real-time data sources, such as vehicle 
health monitoring and driver behavior analytics. 
Exploring hybrid fleet solutions that combine 
electric and traditional buses can further enhance 
operational flexibility, while vehicle-to-grid (V2G) 
technology presents opportunities for energy 
optimization at a systemic level. Furthermore, 
collaboration with policymakers and school 
transportation authorities is crucial to drive 
widespread adoption and address regulatory 
challenges. By aligning cutting-edge technology 
with practical operational needs, this study lays the 
foundation for a more efficient, cost-effective, and 
environmentally sustainable future for electric 
school bus transportation. 
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