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Abstract—In recent years inventory and pricing of 
deteriorating items has gained an enormous attention 
by many researchers. In this study, an inventory 
system for non-instantaneous deteriorating items with 
stochastic demand is modeled. This model has the 
assumptions that shortages are allowed and 
backlogging rate is variable where the last one is 
defined as a function of waiting time for the next 
replenishment. The objective is to maximize the total 
profit per unit time by finding the optimal selling price 
and replenishment schedule simultaneously. The 
concavity of the function is proved with a unique 
optimal solution.  Thereby we provide an algorithm for 
finding the optimal solution. Finally, the authors 
present a numerical example to illustrate the 
theoretical results. A sensitivity analysis for the 
optimal solution with respect to major parameters is 
also carried out. 
 

Keywords— pricing, inventory control, non-

instantaneous deteriorating items, and stochastic demand 

1. Introduction 

The main costs of an inventory system are known as 
the cost of purchasing and holding for the 
enterprises. Enterprises always are looking for 
different methods to reduce inventory costs whereas 
customer satisfaction is increased. To obtain this 
purpose, different models can be formulated.   
Economic Order Quality (EOQ) model is one of the 
main models which have a flexibility to be extended 
to overcome more realistic situations.  Moreover, 
deterioration assumption is one of the most 
important issues that is considered by many 
researchers to modify EOQ model. Ghare and 

Schrader (1963) introduced constant deterioration 

rate for items in their models [1]. Thereafter, Philip 
(1974) presented the inventory model with three-
parameter Weibull distribution rate [2].  Finally, 
Goyal and Giri (2001) provided an excellent and 
perfect review of deteriorating inventory literatures 
[3]. 

The shortage of the inventory is another important 
issue that may occur in the inventory system which 
means that some customers but not all of them might 
wait until the next replenishment happens or as 
mentioned in literature we encountered with the 
partial backlogging. Abad (1996, 2001) investigated 
the model with assumption that partial backlogging 
is allowable [4], [5]. In his model the partial 
backlogging rate depends on waiting time for next 
replenishment. Another works that have been 
investigated partial backlogging are due to Dye 
(2007) and San Jose et al. (2006) [6], [7]. 

Finally, in the real world the price is one of the main 
factors that affect the demand. Generally, any 
decrease in the selling price by the enterprises lead 
to increase in demand by the customers. But 
decrease in price cannot be done arbitrary and is 
mostly restricted by total enterprises cost. Therefore, 
choosing an appropriate price strategy is one of the 
important criteria to maximize enterprises profit. In 
recent years, many experts are looking to find 
methods which consider inventory level and pricing 
for deterioration items simultaneously which leads 
to maximize the enterprises profit. Eilon and 
Mallaya (1966) firstly investigated inventory model 
with price-dependent demand [8]. Afterwards, Chen 
et al. (2006) considered pricing and inventory 
control model for deterioration items in regard to 
price and time-dependent demand with shortage as a 
partial backlogging [9]. In their work, period times 
were finite for n periods. Dye et al. (2007) 
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developed an inventory and pricing strategy for 
deteriorating items with shortages [10]. Demand and 
deterioration rate are continuous and differentiable 
function of price and time, respectively. 

A recent developed issue which affected pricing and 
inventory control models is non-instantaneous 
deterioration phenomena. For the first time, Wu et 
al. (2006) introduced non-instantaneous 
deterioration phenomena[11].  They proposed 
inventory model for non-instantaneous deterioration 
items while demand depends on inventory level. In 
the real world non-instantaneous deterioration exist 
for first-hand vegetables and fruits that they have a 
short span of maintaining fresh quality, in which 
there is almost no spoilage. Computations show that 
if deterioration of items does not commence after 
entering to the system, then instantaneous 
deterioration models may lead to incorrect 
replenishment policy. Ouyang et al. (2006) 
presented an inventory model for non- instantaneous 
deteriorating items with permissible delay in 
payments. But their model does not included the 
concavity prove [12].  Chung (2009) considered this 
issue and presented complete proofs for Ouyang et 
al. (2006) model [13].  Valliathal and Uthayakumar 
(2011) investigated pricing and replenishment policy 
for non-instantaneous deterioration items with 
constant deterioration rate, time and price demand 
[14].   Maihami and Nakhai (2012) developed a 
pricing and inventory control model for non- 
instantaneous deteriorating items. They consider the 
demand as a linearly decreasing function of the price 
and a decrease (increase) exponentially function of 
time [15]. 

In this study, to obtain more realistic condition, an 
inventory model for non-instantaneous deterioration 
items with stochastic demand has been developed. It 
is inevitable to consider the demand as stochastic to 
solve uncertainly for tackling the problem. 
Shortages are allowed and backlogging rate is 
variable which is defined as a function of waiting 
time for the next replenishment. Costs are including 
purchase cost, inventory holding cost, shortage cost 
due to backlogging, opportunity cost due to lost 
sales, ordering cost and deterioration cost. Our 
objective is to determine the optimal selling price 
and replenishment schedule simultaneously such 
that the expected total profit per unit time is 
maximized. 

Following this, in Section 2, assumptions and 
notations used throughout this paper are given. In 
section 3, the mathematical model is presented .In 
Section 4, we establish the necessary conditions for 
finding an optimal solution. For any given selling 
price, we then establish conditions for the optimal 
solution to exist and also be unique. Moreover, the 
expected total profit is proved that a concave 
function of the selling price. Next, in Section 5, we 
present a simple algorithm for finding the optimal 
selling price and inventory control variables. In 
Section 6, a numerical example is given and, finally, 
we provide a summary and some suggestions for 
future work in Section 7. 

2. Notation and Assumptions 

The following notation and assumptions are used 
throughout the paper. 

Notation. 

 k: The ordering cost per order 
c: The purchasing cost per unit 
h: The holding cost per unit per unit time 
s: The shortage cost per unit per unit time 
o: The unit cost of lost sales 
p: The selling price per unit, where p > C 
ε: stochastic part of demand, independent of price 
µ: the mean of ε 
E : expectation 
θ: The parameter of the deterioration rate 
td: The length of time in which the product exhibits 
no deterioration 
t1: The length of time in which there is no inventory 
shortage 
T: The length of the replenishment cycle time 
Q: The order quantity 
p*: The optimal selling price per unit 
t*1: The optimal length of time in which there is no 
inventory shortage 
T*: The optimal length of the replenishment cycle 
time 
Q*: The optimal order quantity 
I1 (t): The inventory level at time t ∈ [0, td] 
I2 (t): The inventory level at time t ∈ [td, t1], where t1 
> td 
13(t): The inventory level at time t ∈ [t1, T] 
I0: The maximum inventory level 
S: The maximum amount of demand backlogged 
TP (p, t1, T): The expected total profit per unit time 
of the inventory system 
TP*: The expected optimal total profit per unit time of 
the inventory system, that is, TP* = TP (p*, t*1, T*). 
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Assumptions:  

1. A single non-instantaneous deterioration 
item is modeled.The replenishment rate is 
infinite and the lead time is zero. 

2. The demand rrate D(p) is a non-negative, 
continuous, decreasing and concave function 
of the selling price p, that is, D' (p) < 0 and 
D" (p) < 0 i.e., its hessian is negative 
definite. 

3. The additive form of D(p) and ε is 
considered as follows 

d(p, ε) = D (p) + ε 
 

4. The distribution of ε is continuous 
5. During the fixed period, td, there is no 

deterioration and at the end of this period, 
the inventory item deteriorates at the 
constant rate θ. 

6. There is no replacement or repair for 
deteriorated items during the period 
under consideration. 

7. Shortages are allowed to occur. It is 
assumed that only a fraction of demand 
is backlogged. Furthermore the longer 
the waiting time, the smaller the 
backlogging rate. Let B(x) denote the 
backlogging rate given by B(x) = 1/ (1 + 
δx), where x is the waiting time until the 
next replenishment and δ>0 is a positive 
backlogging parameter. We use the 
notation used in Abad (1996) [4]. 

 

3. Model Formulation 

In this research the replenishment problem of a 
single non-instantaneous deteriorating item with 
partial backlogging is considered. The inventory 
system is as follows. I0 units of item arrive at the 
inventory system at the beginning of each cycle and 
decrease to zero due to the demand and 
deterioration. Shortage may occur during the 
current order cycle. Here, demand has a stochastic 
distribution which depends on selling price. Based 
on the values of t1 and td there are two possible 
scenarios: (1) t1≥ td and (2) t1≤ td (see Fig.1). These 
scenarios are discussed as follows 
 
 
 
 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Graphical representation of inventory 

system 
 
Scenario 1 (t1≥ td). In this scenario, the 
deterioration of items happens prior to the shortage 
point (t1). Simply, the deterioration is not provided 
during the time interval [0, td], that is in the 
interval [0, td] the inventory level only decreases 
due to demand. Subsequently during the time 
interval [td, t1] the inventory level decrease to zero 
due to both demand and deterioration. Finally, a 
shortage occurs due to both demand and partial 
backlogging during the time interval [t1, T]. The 
whole process is repeated for the next period. 
As described before, during the time interval [0, td], 
the inventory level decreases due to demand only. 
Hence the differential equation representing the 
inventory status is given by  

Scenario 1: t1≥ td 

Scenario 2: t1≤ td 
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(3.1) 

With the boundary condition I1 (0) = I0. By solving 
above equation, it yields. 

 

(3.2) 

The inventory decreases due to the combined effects 

of the demand and deterioration in the interval [td, 

t1]. Thus, the differential equation representing the 

inventory status is given by 

 

(3.3) 

With the boundary condition I2 (t1) = 0. By solving 

above equation, it yields. 

 

(3.4) 

From Fig. 1 we have I1 (t) and I2 (t) at point t = td are 

equal (I1 (td) =I2 (td)).  Thus the maximum inventory 

level for each cycle can be obtained by 

 

(3.5) 

Substituting (3.5) into (3.2) gives 

 

(3.6) 

During the interval [t1, T], the demand at time t is 

partially backlogged according to the fraction B (T - 

t). Thus, the inventory level at time t is governed by 

the following differential equation: 

 

(3.7) 

With condition 13(t1) = 0. The solution of (3.7) is 

                         

 

Putting t = T into (3.8), the maximum amount of 

demand backlogged per cycle is obtained as 

follows

(3.9) 

from (3.5) and (3.9), the order quantity per cycle is: 

 

(3.10) 

        (3.11) 

Next, the costs and revenue of the system can be 

presented by following seven items per cycle 

1) The ordering cost is k. 

2) The expected inventory holding cost (H C) is 

 

 

3) The expected shortage cost due to backlog (Sc) 

 

4) The expected opportunity cost due to lost sales 

(OC) is 

 

5) The expected purchase cost (PC) is 
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6) The expected deterioration cost (Mc) is 

 

 

(7) The expected sales revenue (Sr) is 

 

Finally, the expected total profit per unit time of 

scenario 1 (TP1 (p, t1, T)) is given by: 

 

 

 

 

 

 

Scenario 2 (t1 ≤ td). In this scenario, the deterioration 

happens after shortage point, or simply there is no 

deterioration at all. This implies that the optimal 

replenishment policy for the enterprises is to sell out 

all stock before the deadline at which the items start 

to decay. Under these conditions, the model 

becomes the traditional inventory model with a 

shortage. By using similar approach as in scenario 1, 

the expected order quantity per order, Q, and the 

expected total profit per unit time (TP2 (p, t1, T)) can 

be obtained as follows:  

 

(3.13) 

 

 

 

Summarizing the above discussion, the expected 

total profit per unit time of the inventory system is 

as follows: 

 

 

 

Where TP1 (p, t1, T) and TP2 (p, t1, T) are given by 

(3.12) and (3.14), respectively.  

 

4.    Theoretical Results 

The objective is to determine the optimal selling 
price and replenishment schedule simultaneously 
such that the expected total profit per unit time is 
maximized. To achieve this goal, we should prove 
that for any given p, the optimal solution of (t1, T) 
not only exists but also is unique. Next for any given 
value of (t1, T), there exists a unique p that 
maximizes the expected total profit per unit time. 
The detailed solution procedures for two scenarios 
are as follows. 
Scenario 1 (tl ≥ td). First, for any given p, the 
necessary conditions for the expected total profit per 
unit time in (3.12) to be maximized are following 
equals simultaneously: 
 

 

 

 

 

 

For notational convenience, let 

 

 

(4.2) 

Then, from (4.1), it can be found that 

 

 

(4.3)  

 

 

(4.4) 

 

respectively. 

Due to T >t1, from (4.3), it can be found that 

 

 

Substituting (4.3) into (4.4) and simplifying gives 
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(4.5) 

Next, to find x ϵ (td, t1
b) which satisfies (4.5), let 

 

 

 

 

Taking the first-order derivative of F(x) with respect 

to x ϵ (td, t1
b), it is found that 

 

(4.7) 

 

Thus, F(x) is a strictly decreasing function in x ϵ [td, 

t1
b). Furthermore, it can be shown that                                   

Now let 

 

(4.8) 

This gives the following result. 
 
Lemma 4.1. For any given p, 

a. If G(p)≥ 0, then the solution of (t1, T) which 
satisfies (4.1) not only exists but also is 
unique, 

b. if G(p) <0, then the solution of (t1, T) which 
satisfies (4.1) does not exist. 

Proof: See Appendix A. 
 
Lemma 4.2. For any given p, 

a. If G(p)≥ 0, then the expected total profit 
per unit time TP1 (p,t1, T) is concave and 
reaches its global maximum at the point (t1, 
T) = (t11, T1), where (t11, T1) is the point 
which satisfies (4.1), 

b. If G(p) < 0, then the total profit per unit 
time T P1 (p, t1, T) has a maximum value at 
the point (t1, T) = (t11, T1), where t11 = td 
and T1 = td + h td/ (δ(p - C + N – h td)). 

Proof: See Appendix B. 
The problem remaining in scenario 1 is to find the 
optimal value of p which maximizes TP1 (p, t11, T1). 
Taking the first- and second-order derivatives of TPI 
(p, t11, T1) with respect to p gives 

 
 

 

(4.9) 

 

 

 

(4.10) 

Where D'(p) and D"(p) are the first and second-
order derivatives of D (p) with respect to p, 
respectively. By the assumptions D'(p) and D"(p) < 
0, and it is known that the brace term in (4.10) is 
positive. Therefore d2TP1 (p, t11, T1)/dp2 <0. 
Consequently, TP1 (p, t11, T1) is a concave function 
of p for a given (t11, T1), and hence there exists a 
unique value of p (say P1) which maximizes TP1 (p, 
t11, T1). P1 can be obtained by solving dTP1 (p, t11, 
T1) /d p = 0; that is, P1 can be determined by solving 
the following equation: 

 

 

(4.11) 
Scenario 2 (t1≤ td). Similarly to scenario 1, for any 
given p, the necessary conditions for the expected 
total profit per unit time in (3.14) to be maximized 
are ∂TP2 (p, t1, T)/ ∂t1 = 0 and ∂TP2 (p, t1, T)/ ∂T = 0, 
simultaneously, which implies 
 
 

(4.12) 

 

 

(4.13) 

Respectively. 

From (4.12), the following is obtained: 

 

(4.14) 

Substituting (4.14) into (4.13) gives 
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(4.15) 

By using a similar approach as used in scenario 1,  
the following results are found. 
Lemma 4.3. For any given p, 

a.   If G(p)≤0, then the solution of (t1, T) which 
satisfies (4.12) and (4.13) not only exists 
but also is unique, 

b. If G(p) > 0, then the solution of (t1, T) 
which satisfies (4.12) and (4.13) does 
not exist. 

Proof. The proof is similar to Appendix A, and 
hence is omitted here. 
Lemma 4.4. For any given p, 

a. If G(p)≤0, then the total profit per unit time 
TP2(p, t1, T) is concave and reaches its 
global maximum at the point (t1, T) = (t12, 
T2), where (t12, T2) is the point which 
satisfies (4.12) and (4.13), 

b. If G(p) > 0, then the total profit per unit 
time TP2 (p, t1, T) has a maximum value a 
point (t1, T) = (t12, T2), where t12 = td and T2 
= td + h td / (δ(p - c + N – h td)). 

Proof. The proof is similar to Appendix B, and 
hence is omitted here. 

 
Likewise, for a given (t12, T2), taking the 

first- and second-order derivatives of TP2 (p, t12, T2) 
in (3.14) with respect to p, it is found that It can be 
shown that d2TP2 (P, t12, T2)/dp2 < 0. Consequently, 
TP2 (p, t12, T2) is a concave function of P for fixed 
(t12, T2), and hence there exists a unique value of P 
(say P2) which maximizes TP2 (p, t12, T2). P2 can be 
obtained by solving dTP2 (p, t12, T2)/d p = 0; that is, 
P2 can be determined by solving the following 
equation: 
 

 

 

 

 

 

(4.16) 

 

 

 

 

 

(4.17) 

Combining the previous Lemmas 4.2 and 4.4, the 
following result is obtained. 
Theorem 4.5. For any given p, 

a.    If G(p) > 0, the optimal length of time in 
which there is no inventory shortage is t11 
and the optimal replenishment cycle length 
is T1, 

b. If G(p) < 0, the optimal length of time in 
which there is no inventory shortage is t12 
and the optimal replenishment cycle length 
is T2, 

c. If G(p) = 0, the optimal length of time in 
which there is no inventory shortage is td 
and the optimal replenishment cycle length 
is td + h td / (δ(p - c + N – h td)). 

Now, the following algorithm is established 
to obtain the optimal solution (p*, t* 1, T*) of the 
problem. 

 
5. Algorithm  
Step 1. Start with j = 0 and the initial value of Pj = c. 
Step 2. Calculate G(pj)  = (h td/ δ) - ((Pj - C + N)/ δ) 
ln [(pj - C + N)/ (pj - C +N – h td)]- (htd

2/2) + 
(K/(D(pj)+µ)) for a given pj, 

i. if G(pj) > 0, determine the values t 11,j and 
T1,j by solving (4.1). Then, put (t11,j, T1,j) 
into (4.11) and solve this equation to obtain 
the corresponding value p1,j+ 1. Let Pj+ 1 = 
p1,j+ 1 and (t1j, Tj) = (t11,j, T1,j), go to Step 3. 

ii.  If G(pj)  < 0, determine the values t l2,j and 
T2,j by solving (4.12) and (4.13). Then, put 
(t12,j, T2,j) into (4.18) and solve this equation 
to obtain the corresponding value P2,j+l. Let 
Pj+l = P2,j+l and (t1j, Tj) = (t12,j, T2,j), go to 
Step 3. 

iii.  If G(pj)  = 0, set t1,j = td and Tj = td + (h 
td/ δ (pj - C + N – h td)), and then put 
(t1,j,Tj) into (4.11) or (4.18) to obtain 
the corresponding value P1,j+l(= P2,j+l)' 
Let Pj+l = p1,j+l or P2,j+l and (t1j' Tj) = (td , 
td + (h td/ δ (Pj - C + N – h td))), go to 
Step 3. 

Step 3. If the difference between Pj and Pj+l is 
inevitable (for example, |pj - pj+l |≤0 .005), then 
set p* = Pj and (t1* T*) = (t1j, Tj). Thus (p*, t* 1, 
T*) is the optimal solution. Otherwise, set j = j + 
1 and go back to Step 2. 
  The above algorithm can be implemented with the 
help of a computer-oriented numerical technique for 
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a given set of parameter values. Once (p*, t1*, T*) is 
obtained, Q* can be found from (3.11) or (3.13) and 
TP* = TP (p*, t1*, T*) from (3.12) or (3.14). 
 
6.     Numerical Example 
 
In order to illustrate the solution procedure for this 
inventory system, the following example is 
presented. 
 

S=$5/per unit/per unit time h =$ 1 per unit/per unit time 

K = $250/per order O =$ 25/per unit 

C=$20/per unit m =$23/per unit 

ϴ= 0.08 d (p)=200-4*p 

ε ̴ n(2, 1) δ =0.1 

 td= 0.08 

 
Under the given values of the parameters and 
according to the algorithm in the previous 
section, the computational results can be found 
after five iterations as follows, the optimal 
selling price p* = $36.3812, the optimal length 
of time in which there is no inventory shortage 
t1* = 1.1360, and the optimal length of 
replenishment cycle T* = 1.7123. Hence the 
optimal order quantity Q* = 98.3908 units, and 
the optimal total profit per unit time of the 
inventory system TP (p*, t*1, T*) = $643.9107. 
The numerical results with distinct starting 
values of 35, 35.5, 36, 36.5, 37 and 37.5 were 
run. The numerical results reveal that TP is 
strictly concave in p, as shown in Fig. 2 As a 
result, we are sure that the local maximum 
obtained here from proposed algorithm is indeed 
the global maximum solution. 
 

 

Figure 2. Graphical representation of TP (p| t1
*

, T
*) 

Moreover, if td = 0, this model becomes the 
instantaneous deterioration case, and the optimal 

solutions can be found as follows: p* = 36.4702, t1
* 

= 1.1152, T* = 1.7154, Q* = 98.1714, and TP* = 
633.6486. The results with instantaneous and non-
instantaneous deterioration models for td ϵ {0, 0.08, 
0.17 and 0.24} are shown in Table 1. From Table 1, 
it can be seen that there is an improvement in 
expected total profit from the non-instantaneously 
deteriorating model. Moreover, the longer the 
length of time where no deterioration occurs, the 
greater improvement in expected total profit will 
be. This implies that if the enterprises can extend 
the length of time in which no deterioration occurs 
by improving stock equipment, then the expected 
total profit per unit time will increase. 
 

Table. 1. The results with instantaneous and non-
instantaneous deteriorating models 

 
This study now investigates the effects of changes 
in the values of the cost parameters k, C, h, s, o, and 
ϴ on p*, t* 1, T*, Q* and TP (p*, t*1, T*) according 
to above Example. The sensitivity analysis is 
performed by changing each value of the 
parameters by +50%, +25%, -25%, and -50%, 
taking one parameter at a time and keeping the 
remaining parameter values unchanged. The 
computational results are shown in Table 2. 
On the basis of the results of Table 2, 
the following observations can be 
made. 
When the values of parameters k, C, h, s, o and ϴ 
increase, the optimal selling price p* will increase. 
Moreover, p* is weakly positively sensitive to 
changes in parameters k, h, s, o, and ϴ, whereas p* 
is highly positively sensitive to changes in 
parameter c. It is reasonable that the purchase cost 
has a strong and positive effect upon the optimal 
selling price. 
 
 
 
 
 

td p* t1* T* Q* TP* 

0  36.4702 1.1152 1.7154 98.1714 633.6486 

0.08  36.3812 1.136 1.7123 98.3908 643.9107 

0.17  36.2899 1.1621 1.7132 98.8445 654.8718 

0.24  36.2166 1.1877 1.7179 99.2832 664.0866 
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Table. 1. Sensitive analysis with respect to the model 
parameters 

 

• When the values of parameters k, C, h, 

s, o and ϴ increase, the optimal selling 

price p* will increase. Moreover, p* is 

weakly positively sensitive to changes 

in parameters k, h, s, o, and ϴ, whereas 

p* is highly positively sensitive to 

changes in parameter c. It is reasonable 

that the purchase cost has a strong and 

positive effect upon the optimal selling 

price. 

• In the case in which the values of 

parameters k, s, and o increase, the 

optimal length of time in which there is 

no inventory shortage t*1 will  increase 

while it will decrease as the values of 

parameters h and ϴ increase. From an 

economic viewpoint, this means that 

the retailer will avoid shortages when 

the order cost, shortage cost, and cost 

of lost sales are high. 

• We showed that if the value of 

parameter k increase, the optimal 

length of the replenishment cycle T*   

will  increase, while it will decrease as 

the values of parameters h, s, o, and ϴ 

increase. This implies that the higher 

the order cost the longer the length of 

the replenishment cycle, while the 

lower the holding cost, shortage cost, 

cost of  lost sales, and deteriorating 

rate, the longer the length of the 

replenishment cycle. 

• The optimal order quantity Q* will 

increase while the value of parameter k 

increase and it will decrease with an 

increase in the values of parameters c, 

h, s, o, and ϴ. The corresponding 

managerial insight is that as the order 

cost increases, the order quantity 

increases. On the other hand, as the 

purchasing cost, holding cost, shortage 

cost, cost of lost sales, and 

deterioration rate increase, the order 

quantity decreases. 

• When the values of parameters k, C, h, 

s, o, and ϴ increase, the optimal total 

profit per unit time TP* will decrease. 

This implies that increases in costs and 

the deterioration rate have a negative 

effect upon the total profit per unit 

time. 

 
7.     Conclusions 
 
The problem of determining the optimal 
replenishment policy for non-instantaneous 

paramet
er 

% 
chng
e 

p* t1* T* Q* TP* 

 

K 

-50 36.0131 0.8135 1.2026 70.532 730.3852 

-25 36.211 0.989 1.4781 85.7559 683.449 

25 36.534 1.2648 1.9203 109.3637 609.9398 

50 36.6745 1.3806 2.1096 119.1384 577.6357 

 

C 

-50 31.0898 1.2852 1.6836 134.7753 1351.613 

-25 33.7255 1.1865 1.6672 114.4997 968.019 

50 41.8562 1.1637 2.0301 70.0636 170.4891 

50 41.8562 1.1637 2.0301 70.0636 170.4891 

 

h 

 

 

-50 36.3304 1.2241 1.9133 109.703 653.6015 

-25 36.3848 1.209 1.7869 102.9492 649.8806 

25 36.4055 1.0943 1.6834 96.3494 638.2256 

50 36.4284 1.0559 1.6571 94.4951 632.8709 

 

 

S 

-50 36.2741 1.0707 1.8278 104.7497 660.6403 

-25 36.3352 1.1072 1.7613 101.0904 651.284 

25 36.4171 1.1593 1.6746 96.3117 637.9448 

50 36.4457 1.1785 1.6446 94.6573 633.0074 

 

O 

-50 36.3352 1.1072 1.7613 101.0904 651.284 

-25 36.3597 1.1224 1.7351 99.6343 647.3917 

25 36.4002 1.1482 1.6923 97.2877 640.7785 

50 36.4171 1.1593 1.6746 96.3117 637.9448 

 

Θ 

-50 36.2302 1.5479 2.0301 117.7414 686.8439 

-25 36.3156 1.3042 1.8388 106.1606 662.7933 

25 36.4336 1.0115 1.6221 92.779 628.5901 

50 36.4764 0.9148 1.5542 88.092 615.8625 
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deteriorating items with stochastic demand is 
considered in this study. In this system shortages 
are allowed and backlogging rate is variable which 
is defined as a function of waiting time for the next 
replenishment. There are two possible scenarios in 
this study: (1) the length of time in which there is 
no shortage is larger than or equal to the length of 
time in which the product exhibits no deterioration 
(I1≥ td) and (2) the length of time in which there is 
no shortage is shorter than or equal to the length of 
time in which the product exhibits no deterioration 
(I1≤ td). One numerical example is provided to 
illustrate the theoretical results under various 
situations and a sensitivity analysis of the optimal 
solution is performed with respect to major 
parameters. This paper contributes to existing 
methodology in several ways. Firstly, it addresses 
the problem of non-instantaneous deteriorating 
items under the circumstances in which the 
demand rate is stochastic and is price sensitive 
whereas the partial backlogging is allowed. 
Secondly, deterioration cost is considered that is 
not investigated in previous non-instantaneous 
models. This paper can be extended in several 
ways, for instance, we could extend model by 
considering the non- zero lead time. Also, we may 
consider the permissible delay in payment or 
promotions in the model.  
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Appendix 

A. Proof of Lemma 4. 

Proof of part (a). It can be seen that F(x) is a strictly 
decreasing function in x ϵ [td, t1

b) and 
                               . 
 Therefore, if G (p) ≡ F (td) ≥0, then by using the 
Intermediate Value Theorem, there exists a unique 
value of t1 (say t11)  
such that F (t11) =0, that is, t11 is the unique solution 
of (4.4). Once the value t11 is found, then the value 
of T (denoted by T1) can be found from (4.3) and 
given by   

 

 
Proof of part (b). If G (p) ≡ F (td) < 0, then from 
F(x) is a strictly decreasing function of x ϵ [td, t1

b), 
which implies F(x) <0 for all x ϵ [td, t1

b). Thus, a 
value x ϵ [td, t1

b) cannot be found such that F (t1) =0. 
This completes the proof. 

B. Proof of lemma 4.2 
Proof of part (a). For any given p, taking the second 
derivatives of TP1 (t1, T, p) with respect to t1 and T 
and then finding the values of these function at point 
(t1, T) = (t11, T1) given 

 
Because (t11, T1) is the unique solution of (4.1) if G 
(p) ≥ 0, therefore, for any given p, (t11, T1) is the 
global maximum point of TP1 (t1, T, P). 
Proof of part (b). For any given p, if G (p) < 0, then 
it is known that F(x) < 0, for all x ϵ [td, t1

b). Thus, 

 
Which implies that TP1 (t1, T, p) is a strictly 
decreasing function of T. Thus, TP1 (t1, T, p) has a 
maximum value when T is minimum. On the other 

hand, form (4.3), it can be seen that T has a 
minimum value of 
 as t1= td. Therefore, TP1 (t1, T, p) has a maximum 
value at the point (t11, T1), where t11= td and  

 

 

 

    

 

 


